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The NMR properties of nuclei linked to long linear polymer molecules are 
sensitive to the influence of hard walls. In this context, the residual energy of 
tensorial spin-spin interactions is calculated using a path integral approach. 
Several thermodynamic quantities of the polymer system (free energy, equation 
of state,...) are also expressed, taking chain stiffness effects and the presence of 
two repulsive walls into consideration. 
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1. I N T R O D U C T I O N  

The statistical mechanics of the adsorption of long, flexible polymer chains 
at surfaces has been extensively studied in recent years. ~1'2) The behavior of 
a macromolecule restricted to a bounded domain is of great technological 
and fundamental interest in order to understand the layer properties of 
adsorbed polymers in the vicinity of solids, and colloidal stabilization. We 
shall concentrate our attention on a space region confined between two 
repulsive walls of infinite size. The topological constraints resulting from 
the impenetrability of the walls affect the orientation of the polymer 
segments, as it occurs in a melt due to the presence of entanglements or in 
a covalent gel. ~3) However, the corresponding asymmetry of motions of 
monomeric units induces a residual energy of tensorial interactions of 
nuclear spins attached to the chain skeleton, and, as is well known, the 
relaxation of the transverse nuclear magnetization is governed by the 
average of this residual energy over the whole sample. 

1 CNRS Luminy, Centre de Physique Th6orique, Unit6 Propre de Recherche 7061, Marseille 
C6dex 9, France. 
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The aim of this work is to compute the global energy of spin-spin 
interactions for a continuous chain according to the description previously 
proposed by Edwards (4) and Freed. (s) Following these authors, the statisti- 
cal properties of stiff chains is modeled through a path integral formulation 
assuming that the configuration of a macromolecule is identical to the 
trajectory of a fictitious "particle" in a three-dimensional space. The 
distribution probabilities are expressed in terms of Wiener measures. 

Since the presence of repulsive walls breaks the rotational symmetry of 
the physical space, the nonisotropic behavior of monomeric units is 
described by the statistical properties of the chain tangent vectors similar 
to the velocity of the corresponding "particle." Furthermore, the residual 
energy of spin-spin interactions can be expressed in a tensorial form of the 
velocity components. This supports the use of the Wiener-type functional 
integral method in order to predict the NMR response. 

2. C O N T I N U O U S  CHAIN  M O D E L  

A continuous model of polymer chains will be used throughout this 
work. We start from a Gaussian macromolecule and then add the inter- 
action terms describing stiffness effects or external fields of constraints. The 
sum over all configurations is carried out by applying the path integral 
method. 

2.1. Gaussian Chain 

Given the maximum contour length L of a polymer, Gaussian chains 
are characterized by the following identity: 

{ R  2 ) = LI 

R is the end-to-end vector of the chain and l depends upon its monomeric 
structure and the temperature because of hindered internal rotations. 
Starting from a discrete model picturing a polymer as a freely jointed 
chain, we divide it into n equivalent Gaussian bonds of equal contour 
lengths Ass (Fig. 1), restricted to 

• Asj= L 
j - - 1  

Using general properties of random walks and Brownian motion, the 
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Fig. 1. Freely jointed chain model; the skeletal bonds 1 are freely connected, every sub- 
molecule has a fixed end-separation vector r j - r  j_ 1- 

probability distribution function associated with an individual bond can be 
written as 

( 3 ~3/2 [ 3 (rj_rj 1)2 ] P(rj-- rj ~, ~sj) = \ ~ j  exp 21~Jsj (5) 

provided that each bond contains enough monomer units to obey a 
Gaussian statistics. Taking all the bonds into account, the continuous 
description is obtained when the limits n ~ ~ and Asj ~ 0 are reached. 
Then the distribution function of the end-separation vector R can be 
written in a functional form: 

G(R)=~r(c)-a~[r(s)]exp[-3/2lfo(dr~2dsl,,(o~=o \dsJ (2) 

where G(R) obeys the simple diffusion equation (2): 

c3 l v 2 "  ] 
~ - ~ - ~  RJ G ( R ) = 6 ( L ) ~ ( R )  (3) 

2.2. S t i f f n e s s  E f fec t  

According to models proposed by Freed (6) and Saito et aL, (7~ the stiff- 
ness effect is introduced from a mechanical point of view, associating a 
potential energy function with the bending of the chain. The energy per 
unit length is written as 

~/2 
v =~--7 (4) 

Nc 

822/65/1-2-!8 
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where ~c is the radius of curvature of the curve r(s), and e is a rigidity 
parameter which depends upon the chemical structure of the monomeric 
units, 

la,, a~r 
~ ; i =  ds = as 2 (5) 

According to Eq. (4), an amount of energy is required to bend a chain and 
the straight chain is energetically the most favored. The summation over all 
segments leads to the following form for (5): 

o \-d-~s 2) ds (6) 

The associated probability distribution function of the end-separation 
vector of a macromolecule is 

G(R) ~r(L)-- R 
=, , (o)-0 ~ [ r ( s ) ]  exp( - f lHo)  (7) 

with 

t~e cr (dar~ 2 3 r (dr~ 2 

2.3. External Field of  Constraints 

When a constraint is applied on the chain, for example, by 
entanglements in a melt or cross-links in the gel, it results in a potential 
energy which acts on each monomer. In the continuous description, this 
energy is drawn by a potential per unit length V[r(s)].  The corresponding 
Wiener integral reads 

exp {-f l  f~ V[r(s)] ds} (8) 

In order to describe the chain in terms of the local velocity u(s )=  dr/ds 
instead of r(s), a partial integration is performed from (8), 

f~ V[r(s) ] ds= [sV(s) ]~- Io S ~-~ ds 

I~ dr 
= const + s f(s) "~ss ds (9) 
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where f(s)= -Vr(,)V[r(s)] is the force per unit length which is applied on 
the monomers. The first term of the right-hand part of Eq. (9) is included 
in the normalization constant and 

exp{ - f i foV[r ( s ) ]ds  } 

can be rewritten as 

dr 

with j ( s )=  -fis f(s). 
The probability distribution function for all paths is now expressed as 

G[R, j]  =.~(~)_o ~[ r ( s ) ]  exp( - f iH)  (11) 

with 

. fie~L{dZr)2 3 L(dr']2ds_fLj(s).~_sd s fi":TJo \V/d,+ fo \d,/ 

2.4. Tangent Vector Description 

We note that G[R, j]  depends only upon the derivatives dr/ds. Then 
it is convenient to reexpress Eq. (11) as a function of the tangent vector 
u(s) = dr/ds. (5) 

Providing 
specified by 

that the boundary conditions for chain end points are 

= d~o a~L Uo and UL = 

we obtain instead of Eq. (11) the distribution function in the form 

Go[Uo, UL, j ]  = ~u(O)-Uo ~[u(s ) ]  exp 

with 

fiF~ = 2 \ ds/ + 2l u(s)z - j ( s ) -  u(s) 

(12) 
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In fact, the correct path integral measure should contain the constraint 
/-[,6(u2(s) - 1), which leads to a more complicated expression. In this 
paper I would like to follow the approaches of Doi and Edwards (8) and 
Freed, (6) where the above constraint is ignored. A further discussion about 
this simplification can be found in Freed. (6) For more rigorous treatments 
see also Kholodenko. (9~ 

Go[Uo, UL, j]  satisfies the differential equation: 

2l - J "  UL, j]  

= 6(L)cS(Uo-UL)  (13) 

This equation is related to an equation of motion for the density matrix of 
the harmonic oscillator, and has an analytical solution (1~ 

with 

and 

b ~ 3/2 
Go[Uo, uL, j] = . sh(-L//qJ exp{~EUo, UL, j] } 

~bI-Uo, UL, j ]  =z (L ,  K, b ) - ~ ( L ,  K, b) 

Here the expressions for Z and ~ are given by 

and 

with 

z ( L , K , b ) =  G dsds' e -Is s'l/K j (s) . j (s '  ) 

~(L, K, b) - sh{L/X}  (Uo + t0L) ch - 2Uo" t;L 

+ 2A" (Uoe L / x -  UL) + 2B" (ULe L/x -- Uo) 

q- (A 2 q- B 2) e L / K  - -  2A" B]  
J 

1 f f" e-s/K A = ~ j(s) ds 

(14) 
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and 

B=~ e - (L  ~)/K j ( s )  ds 

275 

3. RES IDUAL ENERGY OF S P I N - S P I N  I N T E R A C T I O N S  

In NMR, the task consists of relating chain statistical properties to the 
relaxation resulting from proton spin interactions. A macromolecule is 
pictured as a succession of skeletal bonds I, freely connected (Fig. 1). 
Given a relative orientation of a spin pair I and a distance between the 
protons a, the angular part of the dipoler interaction is proportional to the 
spherical harmonic Y~176 where 0 ~ measures the angle between the 
constant magnetic field B0 applied along the Zo axis and I. Since dipolar 
coupling decreases as a 3, it is assumed that each proton only interacts 
with its nearest neighbor. The proton pairs are supposed to be linked on 
the chain, the distance a remaining constant. 

The Hamiltonian corresponding to a proton pair in the field B 0 is 
written as 

h ~ = h ~ + h ~  (15) 

h ~  is the Zeeman energy and hJC~D is the dipole dipole coupling within a 
pair. Also, we have 

h~fD = (I 1" I 2 - 3I~I 2) Alz (16) 

with 

AI: = 72h(3 cos 2 0 ~ - l )/2a 3 

where 7 is the gyromagnetic ratio of a proton and 11, I2 the two nuclear 
spins. 

The expression of the relaxation function of the transverse magnetiza- 
tion Mx(t) in the rotating frame is known to be (n) 

Mx(t) = Tr { Jgx(t) ~ x  }/Tr { J{ 2 } (17) 

where the spin operator Jgx represents a proton pair and 

Jlx(t) = eiae~tJgxe i ~ t  

The spin-system response can be conveniently described with (12) 

M~ = cos[ (/3o(l))orie n t] (18) 
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where 

so(l ) = 3y2h(3 cos 2 00 - -  1)/4a 3 

The expression (3 cos 2 0 ~  1) has to be averaged over all bond orienta- 
tions compatible with a fixed end-separation vector r j -  rj_ ~ (Fig. 1 ). This 
constraint induces an orientational order and (~o(l))ori~n is different from 
zero. The result is expressed as (a2) 

(3 cos2 0 ~  1 )orien = (3 COS2 0 ~ -- 1) GO* (3 [rj- rj- ~1 ) 
(ri-r; ~1 As i 

where 

3 
s = 1 + x  -5- 3 c t h x  x (19) 

This expression becomes, in the continuous limit 

{3 c o s ~ [ 0 ~  - 1 } ~ * ( 3  ru(s)l)  (20) 

and we have 

~ * ( 3  lu(s ) l )  = 3u2(s)  _ ~x81-u2(s)]2 + . . .  (21) 

[u2(s)] 2 is associated with ~4/6j4(S)  [see Eq. (28)], and the corresponding 
term for D(s) behaves as j4. If IJl is not too high, it is possible to neglect 
[u2(s)] 2 compared with u2(s) in the average values. 

The Ga*(x) expansion in power series of x is then restricted to its first 
term, and the residual dipolar coupling D(s) is now expressed as 

D(s) =3  2 3 [2uzo(s) - U2o(s) - u2o(s) ] (22) 

An xyz  frame, different from the XoYoZo frame, will be introduced in 
Section 5 to express the potential energy V[r(s)] in a simpler manner. 
Y~176 ) can be expressed in the new frame xyz  using known transformation 
formulas. D(s) now includes an orientational average: 

3 3 COS 2 1 
D(s) - tl E2u2(s ) _ u 2 ( s  ) _ u2(s)] (23) 

5 2 

where t /measures the angle between z and Zo. 
The next sections are devoted to computing D(s) in the presence of 

two repulsive walls. 



Adsorption Effects and NMR Properties 277 

4. REPULSIVE WALLS 

In order to depict the essential features of the mineral-filled polymers, 
we replace the intricate situation where the chains are adsorbed on various 
silica fillers with different surface structures (Fig. 2) by a simpler one 
(Fig. 3) that we now describe. We suppose that the chains are independent 
and a single polymer is placed between two infinite repulsive walls. It gives 
a convenient picture for the mineral fillers, whose typical size is about 
10 - 7  m .  The walls are parallel and the z axis is chosen to be perpendicular 
to both. The corresponding interaction is represented by a potential 
vanishing in the region 0 < z < a while it takes infinite values for z = 0 or 
z = a, given by (13) 

V[z(s) ] = ~,[ - ~ [ z ( s )  ] + c~ [ z ( s )  - a ] ]  

The strength of the polymer-surface interaction is 6s. To obtain a reflecting 
barrier, the chain is restricted to be in the space domain 0 ~< z ( s )  <~ a. Then, 
the end-to-end vector distributions automatically satisfy the boundary 
conditions. We consider the role of (15) on the orientation distribution 
Go[U0, UL, j ] .  The polymer is linked to the walls by a set of contact 
points si ,  s: such that z(s~) = 0 and z ( s j )  = a. 

The indices i (resp. j )  correspond to the wall A (resp. B) and are dis- 
tributed along the curve r(s). The chain ends are supposed not to be linked, 
since the corresponding statistical weights are simpler. This assumption will 
become more explicit in the next section. 

Fig. 2. The real situation corresponds to a many-chain  system where the macromolecules are 
adsorbed on various filler surfaces. The discs with hatched lines represent the mineral fillers. 
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Fig. 3. 

Z 

The model involves two infinite repulsive walls A and B, which are parallel and 
separated by a distance a. The chain is restricted to be in the domain 0 < z < a. 

5. T W O - W A L L  A D S O R P T I O N :  
T H E R M O D Y N A M I C  PROPERTIES 

5.1. Probabi l i ty Distr ibut ion Function 

The physical quantities of the system are now calculated from the 
statistical distribution of the tangent vectors G0[Uo, UL, j].  Now we shall 
concentrate our attention on the situation where the chains have free end 
orientations. Despite its specificity, the choice made for Z0[ j ]  (see below) 
leads to physical predictions identical to those obtained from the well- 
known freely jointed chain model. (~4) By performing an integration over Uo 
and UL compatible with this model, a new distribution Zo[ j ]  is derived 
from GoEUo, UL, j ]  in the following way: 

ZoEJ] = I dUL i  dUo GoEUo, Uc, j ]  = ZoEJ = 0] exp(Wo[j]) (24) 

An expression for WoEJ] has been already proposed (1~ 

Wo[j] =~ f~ f~ jp(S1) jr(s2) APl(sl, s2)dslds2 (25) 

where APl(st, s2) = 6PlA(s~, s2), 6 pl is the Kronecker symbol, and 

A(sl, s2) = ch{(]sl -- s21 - L/2) 1/K} (26) 
4b sh{ L/2K} 

If the chain ends are linked to the walls, the situation where no specific 
choice about  U0 and UL is required is not physically acceptable because of 
the repulsive character of the walls. We suppose that the physical predic- 
tions of the model are not modified in a dramatic way if only a small 
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fraction of macromolecules have ends that lie in the neighborhood of the 
walls. Accordingly, we shall only use Zo[j] instead of G0[Uo, U L , j ]  in 
what follows. 

5.2. Averages Values 

The above distribution function includes a source j(s) defined at any 
point of the chain. The average value of any given functional f [u(s ) ]  of 
u(s) is defined by 

j'~o L ~[u(s) ]  f [u(s ) ]  exp[ - f l  ~ Fo(s) ds] 
( f [u ( s ) ]  > - ~ @[u(s)] exp[ - fl J'~ Fo(s) ds] (27) 

This can also be rewritten as 

< f [ u ( s ) ] ) = [ G o [ U o ,  UL, j]  ] l ~ Go[Uo, UL, j ]  (28) 

Using Zo[j] instead of Go[Uo, UL, j], we get 

1 .  6 
( f [ u ( s ) ] ) - = Z o  [l] f [6]~-~] Zo[J] 

= exp( -Wo[ j ]  ) f [ _ ~ 6  ] exp(Wo[j]) 
LOJtS)J 

(29) 

5.3. Equation of State 

In case computation of (u(s))  is of interest, Eq. (29) involves only a 
first-order functional 

~Wo[j] (u(s)> (30) ~j(~) 

Following the notations of Section 2.3 (see Fig. 3), the source j~(s) can be 
expressed as 

d 
jz(S) = fls d - ~  V[z(s)] 

d 
= - fls6, 7 , ,  [~5 [z(s)] - b[z(s) - a] ] 

azts) 
(31) 
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Now, 

( u z ( s ) )  = L(s')z1(s,s')ds' 

_ ~,Ll [~ f(s,,s) 
6 sh{L/2K} [~(s~)] 2 

where we use the relation 

and 

where 

and 

Guyonnet 

, ~ [ z ( s ) ]  - 

f(sj, s) ] 
~ E~(sj)]2j 

(32) 

I~(s31 
for z(si)=O 

f(si, s)=fl(si, s)+f2(si,s) (33) 

A(ss, s)=ch { l  (Is~-sl-2)} (34) 

si 1 f 2(s. s)= ~ sgn(si- s) sh {~ ( lsi- sl - L  ) } (35) 

Moreover, (ux(s)) and (Uy(S)) vanish because both ix(s) and jy(s) are 
equal to zero. The state equation, in the end-to-end coordinates, is easily 
evaluated by integrating (u(s))  over all s values: 

(x) = (Ux(S)) ds=O (36) 

L 

(Y)  =fo (Uy(S)) ds=O (37) 

(z) =f~ (uz(s)) ds 

= ~ ( /3 ,LK)  le(s , ) lZ . 

Formula (38) shows that the polymer has to be contracted by the presence 
of the two walls, since ( z )  vanishes when the chain has no contact points 
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with walls. Remembering that V[z(s)] is equal to zero when 0 < z(s)< a, 
the physical behavior in this space domain must be isotropic. As expected, 
( z}  increases with the stiffness K according to Eq. (38). 

5.4. Ent ropy  

To calculate the entropy S, it is necessary to know the partition 
function 

Zo[ j ]  = exp(Wo[j])  (39) 

Replacing jz(s) by 

fis6, ~ [z(s)] (40) 

it is possible to give an exact expression for I4/o: 

([~6s/)(~6,,K) { h(si, s;), 
Wo- lZsh{L/2K} Z [i(s-~7])-~e)12 

i, i '  

h(sj, sj) 2 Z' h(s~, sj) ~ (41) 
+j,j,Z i~(sj)l 2 i~(s))l 2 ,,J li(se)12 [~(sj)12j 

with 

/ SiSj~ h(si, sj) = ~ 1 - 

[ s i - s j l s h { l ( t s i - s j l - L ) }  (42) 
+ K 

The calculation is based on the fact that the chain ends are not linked to 
the wall. 

We can easily show that the entropy S can simply be related to W o 
through 

S = -kWo (43) 

According to the previous results, Wo depends upon the ratio K/L. By 
increasing K/L, or 6s, the number of configurations decreases and the chain 
entropy is reduced. The discussion of the results is easier in the limit K >  1, 
since 

lim h(si, s j )=  1 (44) 
K ~  
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and consequently, Wo can be written in this limit as 

Wo - (t~6sl)([36sL) (EA + EB - 2EA~) (45) 
6 

where 

1 
EA = ~ 2 (46) 

i,i' I~(se)l 2 I~(sY)l 

1 
EB = ~ i~(sj)12 i.~(s~)l 2 (47) 

i, ; '  

1 
EAB = ~ (48) 

e,j I-~(si)l 2 I~(sj)l 2 

The last term in (45) includes two individual energies E A and E8 
relative to each separated wall. An interaction energy EAB arising from the 
wall connection due to the polymer has to be subtracted from these. A 
flexibility effect can be described in the limit K/L>> 1 starting from (45). 
When we deal with two disconnected chains (Fig. 4), each linked to a walt, 
W0 becomes 

�9 ([36sl)([~f,L) (EA + EB) (49) W 0 ~ -  ~-  

Now, the fact that the two chains are linked together sharply raises the 
entropy because of the presence of EA~ (Fig. 5). 

This behavior can be understood by looking at the simpler situation 
where the chain only connects two points in front of each other (Fig. 6). 
When the chain is cut, the allowed configurations of each part are 
principally those contained in the planes, as a consequence of the stiffness. 

. . f  "N .. 

-. s i S --- 

Fig. 4. The two disconnected chains are each linked on a wall. 
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i l"  

9 
Fig. 5. The A B wall connection is realized by a single macromolecule. 

To evaluate their number, it is sufficient to count all the possible rod 
orientations in a plane. 

But when both pieces are joined together, the number of allowed 
configurations is increased, since we also have to take into account the 
orientations of the chain portion included between the planes, the bulk, 
in addition to those lying in the surfaces. Subsequently, the entropy is 
increased. 

5.5. Dependence of the Free Energy upon the 
Distance between Walls 

In fact, in the whole polymer system, either the chains are linked to 
different mineral fillers or they form loops on each surface. Since the 
contact points are randomly distributed, physical quantities have to be 
averaged over all si, s; values. By way of illustration, we suppose that the 

Fig. 6. Very stiff chain illustration; each polymer part behaves as a rod. Those with only one 
contact point tend to collapse on the walls, while those connecting.A-B walls are very bent. 



2 8 4  G u y o n n e t  

corresponding probability distribution P(si, sj) is rectangular, and we 
consider chains with only one contact point on each wall: 

1 
P(si'si) L(L-a)  if O<<.si<~L and L>~sj-si>~a (50) 

P(si, sj) = 0 otherwise 

with s~ on the A wall, sj on the B wall, and sj > si. 
Although this crude assumption appears unrealistic to model an 

experimental situation, the resulting free energy qualitatively reflects the 
global behavior of a polymer solution with mineral fillers. An equilibrium 
distance between the walls can be found when F reaches its single minimum 
(Fig. 7); this explains the absence of collapse of such a polymer solution. 
Some stiffness effects can also be discussed (see the end of the section). 

Taking the previous hypothesis into account and 

the free energy is now 

I#(s,)l  = 1 

~F= 6 sh{L/2K} h(s,, sj) (51 )  

50 

45 

40 

~>_ 35 

30 
Ld 
Z 
LJ 25 

Ld 
Ld 20 
E 
L 15 

J 

0 t 2 3 4 s 6 7 8 9 ;0 

d i s t a n c e  b e t w e e n  t h e  w a l l s  

Fig. 7. Theoretical free energy behavior according to formula (54), when the dimensionless 
parameter a/K varies. Each plot corresponds to a chain length and exhibits a minimum which 
is the equilibrium distance between walls. 



Adsorption Effects and NMR Properties 285 

where 

h(si, sj) = (1 - s&\ - K T ) c h { l ( [ s i - s , , - L ) }  

,, , , 2 ,  
+ K 

Thus, the average free energy can be calculated: 

flF= f~ f~ ds, ds: P(si, s, ) fiF (53) 

tiff- ff-(ff , ~_ -~) L ~--~- + L@ ) 2 sh ( a' - L j 2 , 
sh{L'/2} 

_(a,+L@)ch(a'-L'/2) 5 ,2 3 , 
s--fi~{L-~ 6L + 2 L  c t h { U } ]  (54, 

with 

a' = a/K and L' = L/K 

Free energy plots of 6fiF/(fla,l)(fl6sL), taking a' as a variable for different 
L' values, always exhibit a minimum (Fig. 7). This minimum corresponds 
to the equilibrium distance between the walls; it satisfies the equation 

~F 
--~---0 c~a' 

and therefore, 

-a'~+ 2. sh(a'-LJ2) 
2 

( 2 L' ~ ) c h ( a ' - L ' / 2 )  5 + a' a,L,2 3. 
6 sh{L'/2} +6 L'2 = o  (55) 

Figure 8 shows how this equilibrium length varies as a function of L, 
showing that K is homogeneous to a length which measures stiffness range. 

When K>  L, stiffness effects are present within all chains, and the 
polymer exibits rodlike behavior, being entirely unfolded between the 
plates. Accordingly, in the vicinity of the origin, the a(L) dependence is 
nearly linear. Moreover, when K ~  L, the stiffness is only sensitive within 
small chain parts, bent configurations are allowed, and the increase of a(L) 
slows down. 
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~4 

3 
9 

8 

7 
+~ 6 
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, , , , I , , , , I , , , , i , , , , 
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c h a i n  l e n g t h  
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Fig. 8. Numerical illustration of the wall equilibrium distance deduced from (55). The 
increase of a/K as a function of L/K is a typical flexibility effect. 

6. N M R  PROPERTIES 

We now turn to the computation of the average value for dipolar 
coupling D(s) in the case where a single macromolecule is confined inside 
two infinite repulsive walls. 

Formula (28), involving squares of u(s) components, can be 
reexpressed using second-order derivatives of Go[Uo, UL, j]: 

with 

[-6= Ln Go[Uo, UL, j ] D(s) 
L 6jp(S) {)j,(s) 

6 Ln Go[Uo, UL, j ]  5 Ln Go[Uo, UL, j ]  l 
3jp(S) 6j,(s) ] 

2 

After integration over Uo and UL, (56) becomes 

D(~)=M~,[ 6~W~ 6Wo[j]6Wo[j]] 
LaY~fs) aj,(s) F ajp(s) 6~i(s) _] 

(56) 

(57) 
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Using definition (25), we obtain 

•2W~ 6#A(s, s) (58) 
6jp(s) 6j,(s) 

which is independent of j. Since Tr M =  0, the corresponding term in (47) 
vanishes. The contributions to D(s) arise only from the equation of state: 

6Wo[ j ]  (Up(S)) 6jP(s) (59) 

so that the expression in Eq. (57) acquires a simpler form: 

O(s) = 3(3 cos 2 t / -  1 ) [ (uz ( s ) ) ]  2 (60) 

For the sake of simplicity, let us first deal with a single repulsive wall, 
by taking z = 0. The chain is contained in the half-space z ~> 0. An expres- 
sion for D(s) is obtained directly from (60) and (32): 

3 _( 6 sh{L/2K}jfl6sl ,]2 Iz(si)[ 2 1 D(s) = 5  (3 cos 2 t / -  1) 
I~(s~,)l 2 

x {fl(si, s)fz(si', s)+f~(si, s)f2(sc, s) 

+ fl(sr, s) f2(si, s) + fz(Si, s) f2(sr, s)} (61) 

where f l  and f2 are defined by (34) and (35). 
In most cases N M R  measurements give access to the residual dipolar 

coupling D for the whole polymer: 

lfo" D =-~ D(s) ds (62) 

The integration over contour lengths leads to 

3 { flbsl ,]~ g(si, st) D =~ (3 cos ~ ~ -  1) \ (63) 
6 sh { Z/2K} J I~(si)[ 2 

and 

g(s,, s,,)= (1 _s,s,,'~ 

K 

(64) 

822/65/'1-2-19 
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The case of two repulsive walls can be immediately deduced from the 
expression above, by summations over indices i, i' (resp.j, j ' )  for the A wall 
(resp. B), and mixed summations over i, j (Fig. 5): 

D = ~  (3 cos 2 ~/-  1) \ 6  sh{L/2K}J ]2(s~)] 2 [~(sc)[ z 

g(sj, s~,) 2 ~ g(sg, ss) } (65) + E I~(sj)l 2 I~(s/)l 2 i j  I~(si)l 2 I~(sj)l 2 j , j ,  - .  

This formula does not show any symmetry property because the contact 
points are uniformly distributed. Fitting the relaxation spectra with 
(65) remains rather difficult since it depends upon a large number of 
parameters, ~6,l, s]K, s/K, L/K. For comparison with experiments a 
further calculation, including the choice of the derivatives ~(sg) and a 
realistic probability measure over all contact points P(s~, ss), is needed. The 
situation becomes simpler in the case of very stiff chains, since then the 
quantities s]K, s/K, L/K vanish in the limit of K ~ o0. Then we have 

lira g(si, sj) = 2 (66) 
K ~ ( x 3  

and 

z) = i 5  (3 cos 2 ~ - 1) ( /~6j )2  (EA + E ~ -  2EAB) (67) 

The prefactor contains expected terms, because the anisotropy increases 
with the ratio stiffness over the chain length K/L and with the polymer 
surface interaction parameter t36sL The A B wall connection, due to the 
polymer, reduces the anisotropy, as already shown. Although this result is 
quite trivial, it could, in principle, predict the NMR response for a spin 
system of a polymer sample at low temperatures where K ~ oo. 

7. C O N C L U S I O N  

The first purpose of this work was to establish a continuous chain 
model, using a path integral formulation, which can apply to polymer 
adsorption at surfaces. The stochastic measures introduced to describe the 
behavior of a stiff macromolecule were of Wiener type. In this description, 
the constraints along the chain can be conveniently represented by a local 
potential acting on the monomeric units. If the corresponding Hamiltonian 
in Eq. (11) remains isotropic, no orientational order is induced upon the 
polymer segments and the average end-to-end chain vector vanishes. But 
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the presence of two repulsive walls breaks the rotational symmetry of the 
physical space, except in the direction to parallel plabes. This constraint 
leads to a probability distribution which is equivalent to a Ginzburg-  
Landay functional with a local magnetic field. As expected, the average 
value of the end-to-end z coordinate does not vanish and it is an increasing 
function of both the stiffness and the number  of contact points on the walls 
[Eq. (38)]. The Wiener-type formulation allows us to calculate the equi- 
librium distance between the walls through the minimization of the free 
energy. It is a way of understanding the distribution of the mineral fillers 
within the polymer system. 

The second aim of this work was to connect our statistical approach 
with N M R  experiments. Introducing u(s) as the tangent vector along the 
continuous chain, we take u(s) as order parameter. As shown in this paper, 
the dipolar interaction between the spins can be expressed using u(s). The 
deviations from isotropy, resulting from the confinement effects within a 
space domain bounded by the walls, generate a residual dipolar energy. 
This fact is already mentioned in a previous paper, (3) where the topological 
constraints were applied to chain ends. Considering the reflections on the 
walls, the orientational order increases the dipolar energy and decreases the 
entropy. For  very stiff chains the previous quantities are proportional  to 
each other [Eqs. (45), (67)]. 
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